Значительную интенсификацию процесса горения твердого мелкодробленого топлива или грубой пыли, а также максимальное улавливание золы в пределах топочной камеры достигают циклонные и вихревые топки. Циклонный принцип организации горения твердого топлива был предложен в СССР Г. Ф. Кнорре еще в начале 30-х годов. В промышленности применяют различные типы горизонтальных (малонаклонных) и вертикальных циклонных топок для сжигания мелкодробленого топлива или грубой пыли с жидким шлакоудалением.
Принципиальная схема циклонной топки с горизонтальным расположением камеры и жидким шлакоудалением показана на рис. 8.17, а. Топливо подают в циклонную камеру с первичным воздухом. На схеме показан ввод топливно-воздушной смеси через улитку в центральную часть камеры. По оси вводится только дробленка. При сжигании угольной пыли она вводится через тангенциальные сопла.
Вторичный воздух подают в камеру тангенциально через сопла-щели с большой скоростью (более 100 м/с), обеспечивая движение топливных частиц к стенкам камеры. Образующиеся в циклонной камере вихри способствуют интенсивному смесеобразованию и горению топлива как в объеме циклона, так и на его стенках. Развиваемая в циклонной камере высокая температура (1700-1800 °С) приводит к расплавлению золы и образованию на стенках шлаковой пленки. Жидкий шлак вытекает из камеры через летку. Улавливание золы в пределах камеры составляет 85-90 % и более. Отбрасываемые на стенки свежие частицы топлива прилипают к шлаковой пленке, где они интенсивно выгорают при обдувании их воздушным потоком.
В выходной части циклонной камеры имеется пережим (ловушка), через который продукты горения поступают в камеру дожигания. Наличие пережима приводит к уменьшению уноса. Крупные частицы циркулируют в камере до полной газификации. Выносимые из циклона мельчайшие частицы топлива догорают в камере дожигания. Циклонные камеры работают с высокими объемными плотностями тепловыделения qv = 1,5/З МВт/м3 и плотностью теплового потока на сечение циклона qF = 11/16 МВт/м2 при малом коэффициенте избытка воздуха в циклоне а = 1,08/1,1.
Аэродинамическая картина потока в циклонной камере отличается сложным пространственным полем скоростей. Для характеристики движения потока в циклоне главный вектор скорости обычно представляют в виде трех составляющих: осевой (расходной) скорости wх, тангенциальной wт и радиальной wr. На рис. 8.18 показано примерное распределение осевой и тангенциальной скоростей в циклонной камере, свидетельствующее о сложной аэродинамической структуре потока.
Длина циклонной камеры составляет 1,2-1,5 ее диаметра. Схема вертикальной циклонной топки (предтопка) с нижним выводом газов показана на рис. 8.17,б, а схема вертикальной циклонной топки с верхним выводом газов - на рис. 8.17, в. Циклонные и вихревые топки горизонтальные и вертикальные нашли широкое распространение за рубежом. Длительная эксплуатация циклонных топок с жидким шлакоудалением показала высокую их эффективность. Основными их преимуществами являются: высокая объемная плотность тепловыделения, измеряемая несколькими мегаваттами на кубический метр, что приводит к сокращению габаритов установки; улавливание в пределах камеры и удаление в жидком виде около 85-90 % золы топлива, что дает возможность интенсифицировать работу конвективных поверхностей нагрева и в ряде случаев отказаться от установки газоочистительных устройств; возможность работы с малым коэффициентом избытка воздуха (а = 1,05/1,1), что приводит к снижению потери теплоты с уходящими газами; возможность работы на дробленом топливе или пыли
грубого помола, что позволяет упростить систему пылеприготовления и снизить расход электроэнергии на топливоприготовление.
Циклонные и вихревые топки имеют следующие недостатки:
затруднения при сжигании углей с малым выходом летучих, а также высоковлажных углей;
увеличение потери теплоты с физическим теплом шлака (более 2%);
повышенный расход энергии на дутье;
относительно повышенный выход оксидов азота в связи с высокой температурой в циклонной камере.
Положительные особенности закрученных потоков используются в вихревых топках, известных под названием топок с пресекающимися струями. На рис. 8.19 показана схема МЭИ, в которых благодаря соответствующей конфигурации нижней части топки и способу подвода пылевоздушной смеси со скоростью примерно 80 м/с создается вихревое движение с горизонтальной осью вращения. Горячие топочные газы пересекают пылевоздушный поток, обеспечивая его интенсивное воспламенение. Имеются циклонные и вихревые топки с пересекающимися струями с вертикальной осью вращения потока. Циклонный принцип организации теплотехнологических процессов находит в последние годы широкое применение и при создании высокоэффективных энерготехнологических агрегатов (гл. 18).