Горение твердого топлива, неподвижно лежащего на колосниковой решетке, при верхней загрузке топлива показана на рис. 6.2.
В верхней части слоя после загрузки находится свежее топливо. Под ним располагается горящий кокс, а непосредственно над решеткой - шлак. Указанные зоны слоя частично перекрывают друг друга. По мере выгорания топливо постепенно проходит все зоны. В первый период после поступления свежего топлива на горящий кокс происходит его тепловая подготовка (прогрев, испарение влаги, выделение летучих), на что затрачивается часть выделяющейся в слое теплоты. На рис. 6.2 показано примерное горение твердого топлива и распределение температуры по высоте слоя топлива. Область наиболее высокой температуры располагается в зоне горения кокса, где выделяется основное количество теплоты.
Образующийся при горении топлива шлак капельками стекает с раскаленных кусочков кокса навстречу воздуху. Постепенно шлак охлаждается и уже в твердом состоянии достигает колосниковой решетки, откуда он удаляется. Шлак, лежащий на решетке, защищает ее от перегрева, подогревает и равномерно распределяет воздух по слою. Воздух, проходящий через решетку и поступающий в слой топлива, называют первичным. Если первичного воздуха для полного горения топлива не хватает и над слоем имеются продукты неполного горения, то дополнительно подают воздух в надслойное пространство. Такой воздух называют вторичным.
При верхней подаче топлива на решетку осуществляются нижнее воспламенение топлива и встречное движение газовоздушного и топливного потоков. При этом обеспечиваются эффективное зажигание топлива и благоприятные гидродинамические условия его горения. Первичные химические реакции между топливом и окислителем происходят в зоне раскаленного кокса. Характер газообразования в слое горящего топлива показан на рис. 6.3.
В начале слоя, в кислородной зоне (К),в которой происходит интенсивное расходование кислорода, одновременно образуется оксид и диоксид углерода СО2 и СО. К концу кислородной зоны концентрация О2 снижается до 1- 2 %, а концентрация СО2 достигает своего максимума. Температура слоя в кислородной зоне резко возрастает, имея максимум там, где устанавливается наибольшая концентрация СО2.
В восстановительной зоне (В) кислород практически отсутствует. Диоксид углерода взаимодействует с раскаленным углеродом с образованием оксида углерода:
По высоте восстановительной зоны содержание СО2 в газе уменьшается, а СО - соответственно увеличивается. Реакция взаимодействия диоксида углерода с углеродом эндотермическая, поэтому температура по высоте восстановительной зоны падает. При наличии в газах водяных паров в восстановительной зоне возможна также эндотермическая реакция разложения Н2О.
Соотношение количеств получающихся в начальном участке кислородной зоны СО и СО2 зависит от температуры и изменяется согласно выражению
где Есо и EСO2 - энергии активации образования соответственно СО и СО2; А - численный коэффициент; R - универсальная газовая постоянная; Т - абсолютная температура.
Температура слоя в свою очередь зависит от концентрации окислителя, а также от степени подогрева воздуха.В восстановительной зоне горение твердого топлива и температурный фактор также имеет решающее влияние на соотношение между СО и СО2. С повышением температуры реакции СО2+С=Р2СО смещается вправо и содержание оксида углерода в газах повышается.
Толщины кислородной и восстановительной зон зависят в основном от типа и размера кусков горящего топлива и температурного режима. С увеличением крупности топлива толщина зон увеличивается. Установлено, что толщина кислородной зоны составляет примерно три-четыре диаметра горящих частиц. Восстановительная зона толще кислородной в 4-6 раз.
Увеличение интенсивности дутья на толщину зон практически не влияет. Это объясняется тем, что скорость химической реакции в слое значительно выше скорости смесеобразования и весь поступающий кислород мгновенно реагирует с первыми же рядами частиц раскаленного топлива. Наличие кислородной и восстановительной зон в слое характерно для горения как углерода, так и натуральных топлив (рис. 6.3). С увеличением реакционной способности топлива, а также при уменьшении его зольности толщина зон сокращается.
Характер газообразования в слое топлива показывает, что в зависимости от организации горения на выходе из слоя могут быть получены или практически инертные или горючие и инертные газы. Если целью является максимальное превращение теплоты топлива в физическую теплоту газов, то процесс следует проводить в тонком слое топлива с избытком окислителя. Если же задачей является получение горючих газов (газификация), то процесс проводят с развитым по высоте слоем при недостатке окислителя.
Сжигание топлива в топке котла соответствует первому случаю. И горение твердого топлива организуют в тонком слое, обеспечивающем максимальное течение окислительных реакций. Так как толщина кислородной зоны зависит от крупности топлива, то чем больше размер кусков, тем более толстым должен быть слой. Так, при сжигании в слое мелочи бурых и каменных углей (крупностью до 20 мм) толщину слоя поддерживают около 50 мм. При тех же углях, но кусками размером более 30 мм толщину слоя увеличивают до 200мм. Необходимая толщина слоя топлива зависит также и от его влажности. Чем больше влажность топлива, тем больше должен быть запас горящей массы в слое, чтобы обеспечить устойчивое воспламенение и горение свежей порции топлива.